Kulmanov, M., Liu-Wei, W., Yan, Y., & Hoehndorf, R. (2019). EL Embeddings: Geometric construction of models for the Description Logic EL ++. ArXiv, abs/1902.10499.


Jun Chen, Azza Althagafi, Robert Hoehndorf, Predicting candidate genes from phenotypes, functions and anatomical site of expression, Bioinformatics, Volume 37, Issue 6, March 2021, Pages 853–860


Chen, J., Hu, P., Jiménez-Ruiz, E., Holter, O., Antonyrajah, D., & Horrocks, I. (2020). OWL2Vec*: embedding of OWL ontologies. Machine Learning, 110, 1813 - 1845.


Zhapa-Camacho, F., & Hoehndorf, R. (2023). CatE: Graph-Based Embeddings of ALC Ontologies Using Category-Theoretical Diagrams. ArXiv, abs/2305.07163.


Perozzi, B., Al-Rfou, R., & Skiena, S.S. (2014). DeepWalk: online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.


Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.


Peng, X., Tang, Z., Kulmanov, M., Niu, K., & Hoehndorf, R. (2022). Description Logic EL++ Embeddings with Intersectional Closure. ArXiv, abs/2202.14018.


Jackermeier, M., Chen, J., & Horrocks, I. (2023). Box2EL: Concept and Role Box Embeddings for the Description Logic EL++. ArXiv, abs/2301.11118.